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Abstract

A new arbitrarily high order method for the solution of the
model Boltzmann equation for micro-channel flows in the tran-
sitional regime is presented. The Bhattnagar-Gross-Krook ap-
proximation of the Boltzmann collision integral is implemented,
with Shakhov’s modification, and the resulting system of equa-
tions solved by a discrete ordinate method. The method approx-
imates velocity space using a truncated Hermite polynomial ex-
pansion of arbitrary order and performs the associated integra-
tion by Gauss-Hermite quadrature. This approach conserves
mass, momentum and energy during relaxation of the discre-
tised velocity space towards equilibrium. Physical space is
discretised by discontinuous Legendre polynomial expansions
with both the spatial representation and conservative flux cal-
culation being of arbitrary order. Owing to the high order spa-
tial representation of the discretised velocity space the BGK-
Shakhov relaxation process is carried out in a ‘continuous in
space’ manner. New high order boundary conditions of the in-
viscid slip wall and no-slip wall are implemented. A new fully
diffuse reflection boundary condition, built on the high order
spatial information available in the method, is also proposed.
Results are presented for low speed planar Couette flow and
non-linear channel flow.

Introduction

The Boltzmann equation, which describes the evolution of the
velocity distribution of a dilute monatomic gas through binary
elastic collisions, allows the simulation of flows through the
transitional regime, and beyond, where the Navier-Stokes equa-
tions are not valid. Methods that allow the efficient solution of
the Boltzmann equation are therefore highly sought after.

The Boltzmann equation,

∂ f
∂t

+~ξ · ∂ f
∂~x

= Ω( f )≈ ν
(

f target− f
)
, (1)

describes the gas flow in terms of the velocity distribution func-
tion, f = f

(
~x,~ξ, t

)
, which is a function of position, ~x, micro-

scopic absolute velocity, ~ξ, and time, t. The non-linear inte-
gral collision term, Ω( f ), is numerically expensive to calculate
and can be replaced with the much simpler Bhattnagar-Gross-
Krook (BGK) model [1], as shown, which relaxes f towards a
known target distribution, f target, with relaxation frequency ν.
To circumvent the fixed Prandtl number (Pr = 1) limitation of
the BGK model, the Shakhov target distribution may be used
[2]. The Shakhov distribution includes the heat flux vector, ~q,
as an input which is itself a moment of f .

To solve Eq. (1) numerically, the discrete ordinate method
(DOM) [3] may be used, whereby the continuous velocity dis-
tribution function is replaced by multiple discrete distributions,
fi (~x, t), each with a corresponding constant advection veloc-
ity, ~ξi. To enforce conservation of mass, momentum and en-
ergy, in an efficient manner, the continuous distribution func-

tion, f
(
~x,~ξ, t

)
, may be approximated as a truncated Hermite

polynomial [4]. The discrete distributions of the DOM then cor-
respond to the prescribed abscissa of the Gauss-Hermite quadra-
ture rule selected to allow exact integration of the Hermite poly-
nomial.

The linear advection component of Eq. (1) may be implemented
using any number of techniques including finite difference, vol-
ume, and element approaches. Recently, a scheme that uses dis-
continuous truncated Legendre polynomials to represent high
order spatial variations has been proposed [5]. This method uses
the high order information within each finite volume cell to per-
form linear advection and so presents a uniformly high order
scheme that is well suited to the DOM approach.

In this paper we give a brief description of the numerical method
before outlining the high order boundary conditions that have
been implemented and their related issues. Results for channel
flows are then displayed with an investigation into the order of
convergence of the method and the effect of rarefaction on heat
flux into the wall for planar Couette flow.

The Numerical Method

In this section a brief overview of the numerical method will be
presented, for a more complete description refer to Bond et al.
[6]. The Boltzmann equation, given in Eq. (1), can be written in
discrete form while maintaining exact recovery of all moments
of the velocity distribution function up to some arbitrary order,
by mapping f

(
~x,~ξ, t

)
onto a Hermite subspace according to

the method of Shan et al.[4]. The continuous form of the equa-
tions is then reduced to a set of discrete distributions, one for
each of the velocity abscissa,~ξk, required by the Gauss-Hermite
quadrature rule. By replacing the collision operator, Ω, with the
BGK-Shakhov approximation and a reduction of the spatial di-
mension, by the method of Chu [7], the Boltzmann equation can
be written according to Eqs. (2). The g and h terms relate to the
translational and thermal energy components, respectively, of
the original distribution function, f , while the gS

k and hS
k denote

the use of the Shakhov model as the target distribution.
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(
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From this point on it should be noted that all vector quantities
refer to only two spatial variables i.e.~ξ = [u,v].

Nondimensionalisation

We define a characteristic length, L, and speed, C∞, and the
characteristic time, t∞, follows accordingly in Eq. (3). A char-
acteristic density, ρ∞, and temperature, T∞ are also required.

C∞ =
√

RT∞ t∞ =
L

C∞

(3)



The non-dimensional variables for absolute molecular velocity,
~ξ, mean macroscopic velocity, ~Ξ, relaxation frequency, ν, and
the stress,~τ, heat flux, ~q, and acceleration, ~a, vectors can then
be introduced in Eqs. (4).

~̂x =~x/L ~̂ξ =~ξ/C∞
~̂Ξ =~Ξ/C∞

t̂ = t/t∞ ν̂ = νt∞ ρ̂ = ρ/ρ∞

θ̂ = T/T∞ ~̂τ =~τ/ρ∞C2
∞ ~̂q =~q/ρ∞C3

∞

~̂a =~a/(L/RT∞) ĝ = g/
(

ρ∞/C2
∞

)
ĥ = h/ρ∞

Kn = λ/L (4)

The Knudsen number, Kn, indicates the degree of translational
non-equilibrium in the flow.

All quantities from this point on, unless otherwise specified,
will be in non-dimensional form and the carats will be omitted.
The Shakhov distributions for gk and hk, used as the target dis-
tribution in Eqs. (2), can then be given in non-dimensional form
according to Eqs. (5-6).

gS
k = gM

k

[
1− (Pr−1)(~q ·~ck)(~ck ·~ck−4θ)

5θ3ρ

]
(5)

hS
k = gM

k θ

[
1− (Pr−1)(~q ·~ck)(~ck ·~ck−2θ)

5θ3ρ

]
(6)

gM
k =

ρ

2πθ
exp
(
−~ck ·~ck

2θ

)
(7)

The peculiar velocity,~ck, is given by~ck =
~ξk−~Ξk and the non-

dimensional collision frequency, Eq. (8), which determines the
rate of relaxation can also be defined. The variable ω is the
exponent of the power law viscosity although other viscosity
laws can be used.

ν =
ρ

Kn

√
π

2
θ

1−ω (8)

Spatial Representation

The solution of the set of discrete equations given in Eqs. (2),
by the process of linear advection and relaxation, allows for the
implementation of an explicit linear advection solver. The Con-
servative Flux Approximation (CFA) method of Latorre et al.[5]
solves the linear advection equation in multi-dimensional situ-
ations in a high order manner. The CFA method representats
each discrete distribution, gk and hk, as a truncated expansion
in Legendre polynomials, of order Nl , in space that is discontin-
uous across cell interfaces. This can be expressed for the k-th
distribution in cell (i, j) according to Eqs. (9-10).

gi, j,k (~x) =
Nl

∑
m=1

Nl

∑
n=1

a(m,n)
i, j,k Lm (x)Ln (y)≈ gexact

i, j,k (~x) (9)

a(m,n)
i, j,k =

(2m−1)(2n−1)
4

∫∫ 1

−1
gexact

i, j,k (~x)Lm (x)Ln (y)dxdy

(10)

The polynomial representation given by Eq. (9) is encoded in
the coefficient matrix a, of which a(m,n) is the coefficient corre-

sponding to the product of the mth and nth order Legendre poly-
nomials. The exact expression for the advection of the polyno-
mial representaton is given by Eq. (11) and can be seen, for
a 1D example with positive advection velocity, in the first two
panels of Fig. 1.

gk (~x, t +∆t) = gk

(
~x−~ξk∆t, t

)
(11)
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Figure 1: Initial distribution, exact advected solution and final
approximate solution (–) after remapping the exact solution (- -)
onto the local polynomial basis. This figure is illustrative only.

By mapping this exact solution, Eq. (11), back onto the trun-
cated Legendre basis in each cell, according to Eq. (10), we
obtain new expansion coefficients in that cell. These new coef-
ficients describe a high order approximation to the solution of
the exact advection equation at the next time step, seen in the
third panel of Fig. 1. In the cell local reference frame, the solu-
tion to be mapped onto the Legendre basis can be expressed in
terms of the neighbouring polynomial expansions depending on
the advection velocity, time step, and local cell size. Note that
this process does not require smoothly varying cell spacing. For
full details of the procedure in one and two spatial dimensions
the reader is referred to the paper by Latorre et al. [5].

Boundary Conditions

The new boundary schemes developed for this method have
been designed to maintain the arbitrarily high order nature of
the method and are outlined in the following subsections.

Inviscid Slip & No-Slip Wall

The inviscid wall boundary condition requires the reflection of
all incoming velocities with no loss in momentum. This is ac-
complished with ghost cells that mirror the high order interior
cell representations of gk and hk in both physical and veloc-
ity space about the domain boundary. Conservation is enforced
continuously in space and time as the overall density distribu-
tion is mirrored as shown in the first panel of Fig. 2. To intro-
duce a no-slip boundary condition requires the same mirroring
operations as for the inviscid case with the addition of an extra
reflection of the velocity space about the plane perpendicular to
the interface. This enforces the complete transfer of tangential
momentum from the gas to the wall at the interface. Both of
these approaches are shown schematically in Fig. 2.

Diffuse Reflection

The diffuse reflection boundary condition requires that all flux
out of the wall is in an equilibrium state defined by the temper-
ature and velocity of the wall, Eq. (7), while preserving instan-
taneous conservation of mass continuously along the boundary.
This is achieved with the following procedure. Firstly, the in-
terior discrete distributions, gk (~x), are reflected about the wall
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Figure 2: Manipulation of the distribution in physical and ve-
locity space. Inviscid and no-slip wall boundary conditions.

and loaded into the ghost cell. The total mass flux out of the
ghost cell over the next time step, mnon−eq, is then calculated
based on the mirrored ghost distributions. The distribution of
density, within the ghost cell, is also calculated from a summa-
tion of all the discrete distributions giving a density map ρ(~x).
Each gk and hk in the ghost cell is then re-calculated according
to the Maxwellian distribution defined by the wall temperature
and velocity and the spatial density map. A new measure of
the flux out of the ghost cell, meq, is then calculated based on
these updated, equilibrium, discrete distributions. By compar-
ing the total mass fluxes from the ghost cell into the flow do-
main, α = mnon−eq/meq, calculated from the non-equilibrium
and equilibrium distributions, the value of all gk and hk are uni-
formly scaled, by α, to enforce mass conservation.

This procedure uses the high-order information available in the
cell to enforce instantaneous mass conservation at any point on
the boundary rather than time-averaged conservation, which is
typically used in finite-volume methods.

Results

The results in this section are all computed using fourth order
polynomials and so should theoretically achieve fourth-order
convergence in space. The convergence of the method with no-
slip and diffuse boundaries was tested using the Landau and
Lifshitz [8] test case of a steepening wave, which forms a shock
at tshock, with wall boundaries in y. The domain with periodic
conditions in x, on −1 ≤ x ≤ 1, was initialised with conditions
given below, where the sound speed is given by a0 and ratio of
specific heats by γ. The results can be seen in Fig. 3 with con-
vergence in the L2 and L∞ norms of density displayed. These
results will be discussed in the next section.

ρ(x,0) = ρ0

(
1+

(γ−1)ux

2a0

) 2
γ−1

,

p(x,0) = p0

(
1+

(γ−1)ux

2a0

) 2γ

γ−1

,

ux (x,0) = u0 sinπx,uy = uz = 0

The accuracy of the diffuse boundary condition was verified us-
ing the planar Couette flow with results shown to converge to
the analytical solution of Sofonea et al. [9] in Fig. 4, the spatial
convergence of the γ = 5/3 test case is also shown.

The heat flux into the wall in the planar Couette flow for a range
of Knudsen numbers, through the transitional regime, was also
computed and can be seen in Fig. 5.

Discussion
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Figure 3: Density distribution over the domain, density dis-
tribution along the line marked in the contour plot and
spatial convergence for the Landau and Lifshitz test case.
[γ = 5/3,Pr = 0.7,Kn = 0.003,Nl = 4, t = 0.8tshock]

1.0001 1.0002 1.0003
T/T∞

-0.5

-0.2

0.0

0.2

0.5

y/
L

analytic
γ = 9/7
γ = 7/5
γ = 5/3

8 16 24 32 40
Ncells

10−6

10−5

|T
−

T e
xa

ct
|

O(2)
L2,O(1.9)
L∞,O(2.0)

Figure 4: Planar Couette profiles for a range of
specific heat ratios. Convergence for γ = 5/3.[
Pr = 0.7,Ncells = 20,Kn = 0.01,Nl = 4,Uslip = 0.1
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Figure 5: Calculated heat flux into a fully diffuse wall for
Planar Couette flow. (Symbols indicate computed values)[
γ = 5/3,Pr = 0.7,Ncells = 32,Nl = 4,Uslip = 0.1

]
The results shown in Fig. 3 clearly demonstrate that our high-
order, no-slip boundary scheme results in convergence at the
full theoretical order (4th order). This validates the approach of
reflection in physical and velocity space. While the planar Cou-
ette flow simulation with diffuse wall shows close agreement
with the analytical solution in Fig. 4, the convergence results
for the Couette and Landau-Lifshitz test cases show that the
method is not achieving the theoretical order of convergence.
The reason for this discrepancy has been suggested by Alek-
seenko et al.[10] for the Discontinuous-Galerkin (DG) method.
The problem can be traced to the introduction of a discontinu-
ity into each discrete distribution by the ghost cells representing
flow from the wall into the fluid domain. For the diffuse wall,
this is due to the wall distribution being defined according to
the state of the wall rather than the state of the fluid. This dis-
continuity is introduced into the flow domain at each time-step,
shown in Fig. 6, and eliminates the smooth nature of the dis-
tribution required for high-order convergence. An interesting
feature of Fig. 6 is the large effect that relaxation has on the
final form of the discrete distribution.
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Figure 6: Normalised discrete distribution near a diffuse wall.
Note: These results show actual simulation data.

While this method is able to accurately simulate gaseous flows
this reduction in order of convergence has the overall effect
of removing the efficiency incentive for using this high order
method with the diffuse wall boundary scheme. The method
still, however, retains a conceptually superior model of relax-
ation and transport and may prove to have higher accuracy with
the same order of convergence (2nd order) when compared to
traditional finite-volume methods.

The heat flux into the diffuse wall for varying Knudsen numbers
displays a trend of increasing heat flux until the mean free path
is equal to the channel width with orders of magnitude increase
in heat transfer from the continuum to rarefied regime. This
demonstrates the capability of the numerical method to make
predictions across the entire transitional regime. While these
results require further validation they provide an indication of

how using micro-channels with significant rarefaction can in-
crease heat transfer in real world applications.

Conclusions

A new method of arbitrarily high-order discretisation of the
BGK-Shakhov equation in physical and velocity space has been
presented. High order boundary conditions for the inviscid slip
wall and no-slip wall have been implemented and shown to
achieve high order convergence using the Landau-Lifshitz test
case with wall boundaries. A fully diffuse reflection boundary
condition has also been implemented with inherent limitations
exposed. Results for planar Couette flow, with the diffuse wall,
showing the accuracy of the scheme and the variation of heat
flux with Knudsen number have also been presented.
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